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The existence of a fourth mode of heat transfer near the critical point, named the piston effect, has been
known for more than a decade. The typical time scale of temperature relaxation due to this effect was first
predicted by Onuki et al. �Phys. Rev A 41, 2256 �1990��, and this author’s formula has been extensively used
since then to predict the thermal behavior of near-critical fluids. Recent studies, however, pointed out that the
critical divergence of the bulk viscosity could have a strong influence on piston-effect-related processes. In this
paper, we conduct a theoretical analysis of near-critical temperature relaxation showing that the piston effect is
not governed by one �as was until now believed� but by two typical time scales. These two time scales exhibit
antagonistic asymptotic behaviors as the critical point is approached: while the classical piston-effect time
scale �as predicted by Onuki et al.� goes to zero at the critical point �critical speeding up�, the second time scale
�related to bulk viscosity� goes to infinity �critical slowing down�. Based on this property, an alternative
method for measuring near-critical bulk viscosity is proposed.
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I. INTRODUCTION

Heat transfer near the liquid-vapor critical point is gov-
erned not only by diffusion, convection, and radiation, but
also by a thermomechanical coupling called the piston effect.
Before this effect was discovered, it had been known for
some time that heat transfer close to the critical point exhib-
ited a puzzling behavior �see, for instance, �1��, but only
through Nitsche and Straub’s early microgravity experiments
�see, for instance, �2�� did it become clear that some unex-
pected heat transfer process was at work in near-critical fluid.
These observations triggered a large number of studies in the
late 1980s, among which are the pioneering works of Onuki
et al. �3�, Boukari et al. �4� and Zappoli et al. �5�, which led
to the identification of the piston effect. The dynamics of this
specific-heat transfer mechanism has since been extensively
studied by several groups, theoretically, numerically, or ex-
perimentally. The piston effect is described as a thermome-
chanical coupling accelerating the temperature relaxation
close to the critical point: when a near-critical fluid confined
in a closed cell is locally heated, thin thermal boundary lay-
ers form close to the heating device; owing to the extreme
compressibility of near-critical fluids, the thermal boundary
layers expand strongly and compress the rest of the fluid like
a piston; through this isentropic compression of the bulk
fluid, the average temperature in the cell rises in a fast and
homogenenous way, on a much shorter time scale than
through heat diffusion alone. The piston effect �PE� time
scale was first predicted by Onuki et al. �3�, its expression
being as follows:

tPE =
tD

�� − 1�2 . �1�

tPE represents the typical time after which temperature per-
turbations in a closed near-critical fluid cell have almost

completely relaxed by the piston effect. tD is the typical time
scale of heat diffusion in the cell �equal to L2 /DT, with L the
typical length of the fluid cell and DT the thermal diffusiv-
ity�. � is the ratio of the heat capacities of the fluid.

Despite the good understanding of the process and of its
typical time scale gained in recent years, many questions
remain open. Among them is the role of bulk viscosity in
temperature relaxation close to the critical point. Bulk vis-
cosity is indeed predicted to exhibit a very strong divergence
at the critical point �6,7�, and this divergence will certainly
have a strong influence on a thermomechanical coupling
such as the piston effect. Until recently, only two contribu-
tions to this important question had been published: one by
Onuki �8� and another by Carlès �9�. In his article, Onuki
predicted the structure of the stress tensor in a near-critical
fluid and examined its influence on relaxation processes. The
predictions related to the dynamics of the piston effect in that
paper were, however, made with the assumption that pres-
sure remains homogeneous in the fluid throughout the evo-
lution. In the other contribution by Carlès, �9�, this later as-
sumption was contradicted: the asymptotic analysis showed
that a diverging bulk viscosity should have a much stronger
influence on the piston effect than what Onuki predicted.
Indeed, the viscous relaxation processes at hand in the heated
boundary layer prevent its free expansion, thus building up
pressure gradients close to the heated boundaries and weak-
ening the piston effect. The existence of two regimes of the
piston effect was predicted: a classical regime, not too close
to the critical point, where Onuki’s first model �3� is valid
�the temperature relaxation undergoes a critical speeding up�,
and a viscous regime, very close to the critical point, were
viscous stresses in the boundary layer oppose the piston ef-
fect �the temperature relaxation then undergoes a critical
slowing down� �9�. In this second regime, the typical time
scale of the piston effect becomes much different from Onu-
ki’s first formula �1�, although its exact expression was not
clearly identified in Carlès’ work. Besides the two contribu-
tions cited above, Gillis et al. very recently developed a the-
oretical model for sound attenuation close to the critical*Electronic address: carles@ccr.jussieu.fr
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point, in which they included the effect of bulk viscosity
�10�. Although this work is not explicitly related to tempera-
ture relaxation, several phenomena predicted in Gillis’ model
tend to confirm the existence of a second regime close to the
critical point, where bulk viscosity significantly modifies the
boundary layers dynamics.

In the present work, we first extend Carlès’ initial model
�9� to the case of a closed fluid cell whose boundaries are
subjected to a prescribed and arbitrary temperature change.
Based on this result, we transform the general solutions ob-
tained under the form of Laplace transforms into the physical
space of variables, and recover a general dimensional solu-
tion for the temperature relaxation in the fluid by the piston
effect. This solution, generalized to an arbitrary set of bound-
ary conditions, shows that the piston effect is not governed
by one time scale �as believed until now� but by two: Onu-
ki’s classical piston effect time scale �1� and a viscous time
scale whose expression is predicted as a function of the flu-
id’s properties �and, in particular, of the bulk viscosity�. The
identification of a new and so far unsuspected time scale in
the piston effect process leads to the definition of an original
experimental strategy aimed at measuring the bulk viscosity
close to the critical point.

In Sec. II, the problem under study is presented, followed
by Sec. III, where the asymptotic method of resolution is
described. Section IV is then devoted to the analysis of the
obtained results in terms of the physics of the piston effect,
and the new experimental setup for measuring the near-
critical bulk viscosity is presented in Sec. V.

II. PROBLEM UNDER STUDY

A. Description of the system

We consider here a supercritical fluid confined between
two infinite walls, separated by a distance L. The limitation
to a one-dimensional �1D� geometry is in no way restrictive,
since previous analysis showed that 1D models of the piston
effect could easily be extended to complex 3D geometries
using the right similarity coefficients �11,12�. The fluid is
initially at rest and thermal equilibrium, at critical density �c
�a condition frequently fulfilled in classical experiments on
the critical point, but in no way necessary for the present
study�, and at a temperature Ti slightly above the critical
temperature Tc �hence, the initial pressure Pi is slightly
above the critical pressure Pc too�. Let us define �T as the
initial reduced temperature,

�T =
Ti − Tc

Tc
. �2�

No convection is considered here, which means that the fluid
cell is either in microgravity conditions or that all boundary
heatings take place from above �in which case, the effect of
density stratification may be considered too, see �13��. At a
given time t=0, a time-dependent temperature is imposed at
the left wall �x=0�, while the right wall �x=L� is thermally
insulated. This setup is represented in Fig. 1.

B. Modeling of the problem

Supercritical fluids exhibit singular properties at the criti-
cal point. In particular, it is known that isothermal compress-
ibility, heat capacities, and thermal conductivity go to infin-
ity, while heat diffusivity, sound velocity, and surface tension
go to zero. These critical divergences follow power laws
with universal exponents for all critical systems of the same
universality class �14�. In order to simplify the presentation
of the analytical calculation, the following power laws have
been considered along the critical isochore:

Cv = Cv0
�T−�,

� = �0�T−x�,

� ��

�P
�

T

= �0�T−�,

Cs = C0�T�/2, �3�

where Cv is the heat capacity at constant volume, � is the
thermal conductivity, and Cs is the sound velocity. The quan-
tities with the subscript �0� are the prefactors, and the expo-
nents applied to �T are the universal critical exponents �with
��0.11, x��0.64, and ��1.24�. Note that this representa-
tion of the fluid’s thermophysical properties is rigorously
valid only on the critical isochore and in the domain where
critical divergences dominate the nonuniversal behavior of
the fluid. But as will be seen later, the results obtained
through the asymptotic analysis described below can
straightforwardly be generalized to any set of diverging
properties, provided the global hierarchy of the different
asymptotic divergences is kept the same as above. In other
words, all the results presented here will be directly appli-
cable to fluid cells slightly off-critical in terms of density, or
to thermodynamic states where the regular contribution to
thermophysical properties is still significant. In the same way
as above, the divergence of the bulk viscosity is simply writ-
ten as

FIG. 1. System under study.
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4

3
�s + �B

�c
= 	0�T−x�B, �4�

where �s is the shear viscosity, �B is the bulk viscosity with
	0 its prefactor, and x�B

is its critical exponent. x�B
is

thought to be about 1.94 �7,15,8�, which means that the criti-
cal divergence of the bulk viscosity is certainly the strongest
one of all thermophysical properties. Note that the shear vis-
cosity �s exhibits a very slow divergence at the critical point,
totally negligible compared to that of the bulk viscosity. In
the above definitions, the value of each property is defined as
a function of the initial reduced temperature. In other words,
it will be considered constant throughout the evolution of the
fluid. This choice implies a limitation on the amplitude of the
temperature heating law: the boundary heating must be small
enough to be able to consider that the fluid’s properties are
not affected by the temperature change.

The fluid motion is represented by the one-dimensional
unsteady Navier-Stokes equations, to which are added the
equation of energy and an arbitrary equation of state. The
following dimensionless quantities are defined:

T* =
T

Tc
, P* =

P

Pc
, �* =

�

�c
,

U* =
U

Cs
, x* =

x

L
, t* =

tCs

L
, �5�

where T, P, and � are the thermodynamic coordinates, U is
the macroscopic fluid’s velocity, and x and t are the space
and time variables. In the above formulas, stars �*� denote
dimensionless quantities. The dimensionless equations of the
problem are then �the stars have been omitted for the sake of
readability�

�t + ��U�x = 0, �6a�

�Ut + �UUx = − A�T−�Px + 
�0�T�−�/2�−x��Uxx, �6b�

�Tt + �UTx = − B�T�TUx + 

�0

Pr0
�T��/2�−x�Txx

+ 
�0B2�T�3/2��−x��Ux
2, �6c�

�P = C�T + D�T��� , �6d�

where the following coefficients are dimensionless quantities
of order 1:

A =
Pc�cCv0

Tc
� �T

�P
�

�

2

, B =
1

�cCv0

� �P

�T
�

�

,

C =
Tc

Pc
� �P

�T
�

�

, D =
�c

Pc�0
,

�0

Pr0
=

�0

�s0
Cv0

, �0 =
�c0

�s0

. �7�

Note that the product ABC is equal to 1. Equation �6a� is the
continuity equation, Eq. �6b� is the momentum equation, Eq.
�6c� is the energy equation, and Eq. �6d� is an arbitrary equa-
tion of state in differential form. In the above equations, two
dimensionless small parameters appear: �T �already defined
in Eq. �2�� and 
, defined as


 =
�s0

�cLC0
. �8�

With this definition, 
 appears as the inverse of a reference
acoustic Reynolds number. To the above system are added
the following boundary and initial conditions. A time-
dependent temperature is imposed at the left wall �x=0�,

T�x = 0,t� = Ti + Twall�t� , �9�

which can be written in dimensionless form as

T*�x* = 0,t*� = 1 + �T + Tw
* �t*� , �10�

where = �1/Tc�max�Twall�t��. Through this definition, Tw
* is a

function of time varying from 0 to 1 �or −1 in the case of a
cooling�, while  is the order function representing the di-
mensionless amplitude of the wall temperature perturbation.
In order to ensure that the properties of the fluid are not
significantly modified by the local heating, one has to impose
��T.

The right wall is chosen to be adiabatic, hence

Tx*
* �x* = 1,t*� = 0. �11�

Both walls are solid, so

U*�x* = 0,t*� = U*�x* = 1,t*� = 0. �12�

The initial conditions are then

T*�x*,t* = 0� = 1 + �T, �*�x*,t* = 0� = 1,

P*�x*,t* = 0� = Pi
* = 1 + �P, U*�x*,t* = 0� = 0. �13�

The above system of equations with the related boundary and
initial conditions is too complex to solve in exact form.
However, the existence of small parameters linked to the
critical divergences suggests an asymptotic approach. In the
next section, an asymptotic analysis of the system is pre-
sented.

III. ASYMPTOTIC ANALYSIS OF THE SYSTEM

In system �6a�–�6d�, 
 and �T are both much smaller than
unity. For instance, in the case of a 1-mm cell filled with
3He, 
=4.5�10−7, while �T can be arbitrarily small, de-
pending on the initial temperature. For the sake of the
asymptotic analysis, both of these parameters will be consid-
ered as going to zero.

In cases where two asymptotically small parameters are
present, asymptotic analyses must be conducted with great
caution. Indeed, the final result of the asymptotic process can
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be dependent upon the relative rate at which the two param-
eters go to zero. When such a phenomenon is observed, the
system is said to be singular in the space of parameters. An
asymptotic analysis of system �6a�–�6d� was already con-
ducted in �9� �for a less general set of boundary conditions�,
which led to the identification of such a singularity. In other
words, the reduced system of equations obtained from Eqs.
�6a�–�6d� by making first 
 and then �T go to zero is differ-
ent from the one obtained by making first �T and then 
 go
to zero. This problem was handled in �9� by constructing an
intermediate system through which these two extreme cases
could be matched. It was shown that such an intermediate
system could be obtained by making 
 and �T go to zero
with � fixed, where

� =
�T


2/� �14�

with �=2�+x�+x�B
−2�. The parameter � appears naturally

as a result of the asymptotic analysis process, but it has a
physical meaning which will be discussed in the next sec-
tion. The system obtained with � fixed is called the inner
description. It is more general than the two systems obtained
by making first 
 and then �T go to zero or first �T and then

. Each of these systems �called the outer descriptions� can
be deduced from the inner description by making � go to
infinity or to zero, after the asymptotic series have been ob-
tained. Two different regimes of the piston effect were thus
identified in �9�: one, for ��1 �i.e., not too close to the
critical point�, is the classical regime of the piston effect,
already presented in �16,11,12� �and equivalent to Onuki’s
initial model �3��; the other one, for ��1 �i.e., very close to
the critical point�, is a regime where viscous stresses domi-
nate the relaxation dynamics, and was thus named the vis-
cous regime of the piston effect.

In the present work, we try to characterize the dynamics
of temperature relaxation through these three regimes �clas-
sical, intermediate, and viscous�, and in particular to identify
an explicit form of the typical time scales involved in this
process �a general result not obtained in our previous work
�9��. As said above, the system obtained for � fixed �the inner
description� is the most general system which can be ob-
tained through the asymptotic limits of �T and 
. In the
present study, Eqs. �6a�–�6d� are thus expanded for the fol-
lowing conditions:

�T → 0,


 → 0,

� = O�1� . �15�

As can be seen in Eq. �6c�, making �T and 
 go to zero for
fixed x* and t* leads to the disappearance of the heat diffu-
sion term in the equation of energy. In other words, the sys-
tem becomes adiabatic, which prevents the wall heating from
having any thermal effect on the fluid. This is due to another
type of singularity: a spatial singularity. Indeed, the diffusion
term in Eq. �6c� is negligible everywhere in the fluid except
very close to the heated wall, where strong temperature gra-

dients counterbalance the weak heat diffusivity. The effect of
heat diffusion is thus not absent from the fluid, but simply
limited to a very thin boundary layer close to the heated wall.
This layer is asymptotically thin �in terms of �T and 
�, so
that it can only be observed through a change of variable in
which x* is replaced by z*, with

z* =
x*

�
�16�

and

� = ���T,
� = o�1� . �17�

Two systems are consequently necessary to describe the be-
havior of the whole fluid: an outer expansion conducted for
��T→0, 
→0, �=O�1�� with x* fixed, which describes the
dynamics of the bulk fluid, and an inner expansion �or
boundary layer expansion� conducted for ��T→0, 
→0, �
=O�1�� with z* fixed, which describes the boundary layer
dynamics. The definition of � as a function of �T and 
 is
obtained by ensuring that the term representing thermal dif-
fusion in Eq. �6c� survives the asymptotic process in the
boundary layer expansion. The matching between the two
systems is then made using the method of matched
asymptotic expansions �17�. Note that at the begining of the
asymptotic analysis, the typical time scale on which the sys-
tem must be expanded �i.e., the typical time scale of the
piston effect� is unknown: it is defined through the dimen-
sionless time variable �*, which is related to t* through

�* = et*, �18�

where

e = e��T,
� = o�1� . �19�

The characterization of e is obtained by ensuring that the
temperature perturbations in the boundary layer and in the
bulk fluid are of the same order of magnitude �in other
words, by ensuring that on the time variable �*, the piston
effect has already significantly thermalized the fluid cell�. As
will be seen in the result of the asymptotic analysis, e is such
that the typical time scale of the piston effect remains longer
than the acoustic one and shorter than the diffusive one
throughout the parametric domain of interest here. The
propagation of thermoacoustic waves in the cell will thus be
filtered in the present work, with only their average effect on
relaxation processes being considered.

Once all the different variables and systems are asymp-
totically constructed, a set of solutions for the temperature
relaxation can be calculated, based on the chosen boundary
and initial conditions �10�–�13�. The whole asymptotic pro-
cess and the related calculations are described in the Appen-
dix.

IV. RESULTS AND DISCUSSION

A. Bulk temperature solution: The two time scales of the
piston effect

The asymptotic process described above leads to a set of
first-order uniformly valid solutions for the temperature, den-
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sity, pressure, and velocity profiles in the fluid cell, at all
times and for all positions in the cell. These solutions can be
applied to any initial reduced temperature, since the inner
description on which they are based �i.e., the expansion at
�=O�1�� is the most general expansion of the system under
study �it implicitly contains all the different regimes of the
piston effect�. An interesting particular solution is the one
governing the evolution of the bulk temperature, i.e., the

temperature of the fluid far from the heated walls �which is
uniform in the whole fluid cell apart from the boundary lay-
ers�. This temperature solution is a direct measure of the
temperature relaxation in the fluid by the piston effect. Let us
denote the bulk temperature variation as Tb, and the heated
wall temperature variation as Tw �see Eq. �10��. When trans-
lated into dimensional variables, the asymptotic solution be-
comes �under the form of a Laplace transform�

Tb�s� = Tw�s� .
1

1 +	� DPr0L

BC�0Cs

�T�+x�−�3/2���s + ��0Pr0L2

�0Cs
2 �Tx�−�−x���s2

, �20�

where s is the Laplace complex parameter �whose dimension
is the inverse of a time�. The above solution is of course
based on the specific form of transport coefficients presented
in Eq. �3�. Using these last definitions, it is possible to relate
the coefficients in Eq. �20� to the thermophysical properties
of the fluid in an explicit manner. The bulk temperature so-
lution then becomes

Tb�s� = Tw�s�
1

1 +	 s

�c
+

s2

�v
2

, �21�

where

�c = −
Tc�

�c
3L2Cv

2� ��

�T
�

P
� �P

�T
�

�

�22�

and

�v
2 =

Tc�

�c
2L2Cv

2��B +
4

3
�s��

�P

�T
�

�

2

. �23�

The above solution �21� generalizes Eq. �20� for thermo-
physical properties of more general expressions than those
considered in Eq. �3�. Indeed, the asymptotic expansion as
detailed in the Appendix remains valid for all sets of prop-
erties with equivalent asymptotic relationships to the one
considered here. In other words, the solutions obtained here
are not limited to the specific forms of thermophysical prop-
erties presented in Eq. �3�, which were chosen only in order
to simplify the exposition of the calculation.

Expression �21� shows that the Laplace transform of the
bulk temperature variation is obtained as the product of the
Laplace transform of the temperature variation at the heated
wall with a characteristic function of the system. When the
inverse Laplace transform of this expression is calculated,
one obtains

Tb�t� = Tw�t� � i�t� , �24�

where � represents the convolution product, and

i�t� = L−1
 1

1 +	 s

�c
+

s2

�v
2 � . �25�

Using the classical terminology of signal theory, i�t� can be
called the impulse response of the system, its Laplace trans-
form being the system’s transfer function. i�t� is independent
of the heating law Tw�t�: it thus characterizes the thermal
response of the supercritical fluid cell itself. One can observe
that i�t� and its associated transfer function depend only on
two typical pulsations, �c and �v. These quantities are the
inverse of two typical times, which can be expressed in an
explicit way,

1

�c
= tPE =

tD

�� − 1�2 , �26�

1

�v
= tv = 	tPE��B + 4

3�s��T � 	tPE�B�T �27�

with �T the isothermal compressibility,

�T =
1

�
� ��

�P
�

T

. �28�

The above expressions lead to the first conclusion of the
present study: the piston effect’s typical response is not gov-
erned by one typical time �as was believed until now�, but by
two: one of them, tPE �26�, is the classical piston effect typi-
cal time, first identified by Onuki et al. �3�. The other one, tv
�27�, is the viscous typical time: it characterizes the time
delay that viscous stresses impose to the free thermal expan-
sion of the boundary layer. When this delay is much smaller
than the piston effect time scale itself, viscosity has almost
no effect. When it is longer, on the contrary, it becomes the
limiting factor of the thermal relaxation. The thermal re-
sponse of the fluid is thus conditioned by the longer of the
two characteristic times tPE and tv.

Let us examine the evolution of tPE and tv with the initial
reduced temperature �T,

TWO TYPICAL TIME SCALES OF THE PISTON EFFECT PHYSICAL REVIEW E 71, 066310 �2005�

066310-5



tPE � �T�−2�+x� � �T1.66, �29�

tv � �T�1/2��x�−x�B
�−� � �T−0.74. �30�

The above scaling relations show that tPE, the classical piston
effect time scale, goes to zero at the critical point: this illus-
trates the well-known phenomenon of the critical speeding
up. But at the same time, tv goes to infinity at the critical
point: when tv becomes larger than tPE, a critical slowing
down should occur. This observation was first made in �9�,
although not quantified in a general manner. The expressions
obtained for tPE and tv and their critical behavior now enable
us to identify more clearly the physical meaning of the inner
parameter �. Indeed, one has

� � � tPE

tv

1



�2/�

. �31�

Hence, �, which came naturally out of the asymptotic pro-
cess, is found to be proportional �to a certain power� to the
ratio of the two typical times of the piston effect. In Fig. 2,
the different typical time scales of the problem have been
drawn as functions of �T for a 1-mm cell filled with 3He: the
classical time of the piston effect tPE, the viscous time of the
piston effect tv, the typical time of heat diffusion tD
=L2�cCp /�, and the typical acoustic time ta=L /Cs. These
typical times have been drawn using the full expressions of
the thermophysical properties of 3He �not restricted to the
universal component as in Eq. �3��, as calculated by a model
provided by Fang Zhong from JPL �18�.

The crossover between a regime of critical speeding up
and a regime of critical slowing down can be clearly ob-
served: as long as �T is larger than 5�10−4 �i.e., tPE� tv�,

the temperature relaxation is dominated by tPE and thus un-
dergoes a critical speeding up: the fluid cell is in the classical
regime of the piston effect; when �T becomes smaller than
5�10−4, on the contrary �i.e., tPE� tv�, the relaxation is gov-
erned by tv, which is longer and longer as the critical point is
approached: the fluid cell enters the viscous regime of the
piston effect, where a critical slowing down occurs. Note that
Fig. 2 has been drawn using an estimated value of �0, based
on Onuki’s expression for the zero-frequency value of the
bulk viscosity �8� ��0=0.0235�. The physical interpretation
of the origin of this second regime lies in the strong diver-
gence of the bulk viscosity: when bulk viscosity becomes
larger and larger, viscous stresses progressively tend to op-
pose the free thermal expansion of the boundary layers,
which weakens the piston effect; in the viscous regime, the
divergence of the bulk viscosity becomes strong enough to
overcome the divergence of the isothermal compressibility,
so that the viscous weakening becomes more and more pro-
nounced: the temperature relaxation slows down at the criti-
cal point.

B. The classical regime of the piston effect

As said above, the classical regime of the piston effect is
observed when tPE is much larger than tv. In this case, one
has �except for very early times, characterized by �s�
��v

2 /�c�

 s

�c
 �  s2

�v
2 �32�

so that i�t� becomes

FIG. 2. Classical time scale �dark full line� and viscous time scale �dark dotted line� of the piston effect, compared with the typical time
scales of heat diffusion �gray dotted line� and of acoustic properties.
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i�t� � L−1� 1

1 +	 s

�c
� =	�c

�t
− �cexp��ct�erf c�	�ct� .

�33�

The condition �s���v
2 /�c translates in time to t� tv

2 / tPE. For
instance, in 3He at �T=0.01, the above simplification is thus
valid for values of the time t larger than 0.1 �s. Given the
expression of the impulse response i�t�, it is easy to find the
temperature response of the bulk fluid to any wall tempera-
ture law using relation �24�. It can be easily checked that the
obtained result is equivalent to the thermal response pre-
dicted by Onuki et al. in �3�, by Carlès in �11�, and by Zap-
poli and Carlès in �16� for different heating laws. The clas-
sical results obtained so far on the piston effect dynamics by
several groups are thus recovered as particular cases of the
present theory. A temporal evolution of the bulk temperature
Tb�t� has been drawn in Fig. 3 for a 1-mm cell filled with
3He, subjected to a sudden temperature quench of amplitude
�T. The different curves relate to different initial reduced
temperatures �T, all chosen above 5�10−4 �that is, in the
classical regime of the piston effect�. The critical speeding
up of temperature relaxation is clearly visible.

C. The viscous regime of the piston effect

When tv is much larger than tPE �in contrast to the previ-
ous case�, then the piston effect is in the so-called viscous
regime. As said above, this regime is characterized by the
fact that strong viscous stresses build up in the thermal
boundary layers, opposing their free expansion. The piston
effect is consequently weakened and this weakening is more
and more pronounced as the critical point is approached due

to the strong divergence of the bulk viscosity. The general
form of the impulse response i�t� can then be simplified into
�except for very late times, characterized by �s���v

2 /�c�

i�t� � L−1� 1

1 +
s

�v
� = �vexp�− �vt� . �34�

For instance, in 3He at �T=3�10−5, the above simplifica-
tion is valid for values of the time t smaller than 10 s. The
above expression for i�t� is very interesting, as it has an
explicit meaning in the framework of signal theory: it is the
typical impulse response of a first-order low-pass filter of
cutoff pulsation �v. Through Eq. �24�, the relationship be-
tween the wall and bulk temperatures can consequently be
summarized in the following way: in the viscous regime of
the piston effect, the bulk temperature follows the wall tem-
perature filtered through a first-order low-pass filter. In other
words, harmonic components of the wall temperature law of
frequencies smaller than the cutoff frequency will be repro-
duced exactly in the bulk fluid, while components of higher
frequencies will be strongly attenuated. Note that the cutoff
pulsation �v goes to zero at the critical point �see Eq. �30��.
This property explains the critical slowing down predicted
close to the critical point: the bulk thermal response can only
follow slower and slower temperature changes at the wall.
Let us now examine two particular heating laws and the as-
sociated bulk temperature evolutions.

First, let us consider a temperature quench at the wall, like
the one used to draw Fig. 3,

FIG. 3. Time evolution of the bulk temperature after a quench of the fluid cell of amplitude �T, for different reduced temperatures in the
classical regime of the piston effect �the fluid cell is 1 mm long and filled with 3He�.
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Tw1
�t� = �T H�t� , �35�

where H�t� is the Heavyside function and �T the amplitude
of the temperature increase. Then the bulk temperature in-
crease Tb1

�t� is

Tb1
�t� = �T�1 − exp�− �vt�� . �36�

The bulk temperature response to the quench has been plot-
ted in Fig. 4, calculated for a 1-mm cell filled with 3He. As in
Fig. 3, the different curves relate to different initial reduced
temperatures �T, all chosen below 5�10−4 �that is, in the
viscous regime of the piston effect�. The critical slowing
down of temperature relaxation is clearly visible, as opposed
to the critical speeding up observed in Fig. 3. A peculiar
observation can, however, be made about Fig. 4: although at
early times, a critical slowing down of the relaxation indeed
occurs, a critical speeding up is recovered at late times. It is
at present difficult to give a clear interpretation of this phe-
nomenon, but it can be understood if the viscous time scale
tv is indeed viewed as a delay: such a finite delay may have
a strong influence on early-time behavior and a negligible
one on late-time behavior �thus explaining that the late-time
behavior follows the classical nonviscous dependence on re-
duced temperature�.

Let us now consider an oscillating temperature variation
at the wall, of amplitude �T and pulsation �,

Tw2
�t� = �T sin��t� . �37�

The bulk temperature variation is then

Tb2
�t� = �T

�v

	�v
2 + �2

sin��t − �� �38�

with tan���=� /�v. The above expression is particularly in-
teresting, as it clearly stresses how the viscosity-dominated
piston effect filters the boundary temperature evolution:
when ���v , Tb2

almost follows Tw2
exactly: the bulk tem-

perature variation reproduces the wall temperature variation;
when ���v, on the contrary, the amplitude of the bulk tem-
perature variation decreases strongly with �, like �−1. At the
same time, the phase lag between the wall and the bulk tem-
perature goes from 0 �for small frequencies� to −� /2 �for
large frequencies�. This behavior is illustrated in Fig. 5,
where the amplitude ratio between Tb2

�t� and Tw2
�t� is plotted

as well as the phase lag between them.

D. A new way of measuring near-critical bulk viscosity

Expression �38� and Fig. 5 suggest a new way of measur-
ing near-critical bulk viscosity. Indeed, �v is an explicit
function of the bulk viscosity �B �see Eq. �23��. In other
words, if the other properties of the fluid are known with
enough precision, then an indirect measure of the bulk vis-
cosity could be deduced from the characterization of the cut-
off pulsation of the piston effect in the viscous regime. Such
a characterization could be done as follows.

A closed fluid cell would have to be constructed, under
the form of a small gap between two large horizontal plates
of copper, the gap being filled with a near-critical fluid at
critical density. The top and bottom copper walls would then
have to be heated and cooled in a periodic way, so as to
impose a small-amplitude monochromatic oscillation of the
temperature at the interfaces between the two walls of copper

FIG. 4. Time evolution of the bulk temperature after a quench of the fluid cell of amplitude �T, for different reduced temperatures in the
viscous regime of the piston effect �the fluid cell is 1 mm long and filled with 3He�.
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and the fluid. The only internal measurement needed would
then be a time-resolved measurement of the wall tempera-
tures and of the temperature in the middle plane of the fluid
layer. The first temperatures �which should be equal� would
be equivalent to Tw�t� in our model, while the middle-plane
temperature would be equivalent to Tb�t� in our model. Then,
by sweeping the frequency of the oscillatory heating, one
would only need to measure for each frequency the ratio of
the amplitudes of Tw�t� and Tb�t� as well as their phase lag,
and identify �v through these measurements �something
which could easily be done on plots such as the ones in Fig.
5�. Knowing �v would directly yield the value of �B, the
bulk viscosity. Note that instead of being confined in be-
tween two conducting walls of imposed time-varying tem-
peratures, the fluid layer could be confined between one
heated wall and one adiabatic wall. Then Tw�t� would be
measured on the heated wall and Tb�t� on the adiabatic wall
�a solution which would allow us to avoid putting sensors
inside the fluid�.

A similar experimental strategy, based on a periodic
boundary heating, was proposed by Zhong et al. �19� based
on a suggestion by Onuki �8�. In these authors’ reference,
however, two elements made this strategy inapplicable to
measuring the bulk viscosity: first, the authors evaluated the
possibility of measuring the bulk viscosity through a mea-
sure of the bulk density response to a boundary oscillatory
heating �a less sensitive diagnostic than temperature�; be-
sides, they relied for their estimation of the amplitude of the
effect on Onuki’s model �8�, which omitted the effect of the
bulk viscosity on pressure in the boundary layer �as dis-
cussed before� and thus underestimated the global influence

of this property on relaxation processes. The experimental
strategy we present here is thus significantly different from
the one described in �19�, and based �in our view� on a more
precise understanding of dynamic processes close to the criti-
cal point.

Of course, only the rough principle of the experiment has
been described here. In order for such a principle to be ap-
plicable in practice, a detailed feasability analysis should be
conducted �something which is beyond the scope of this pa-
per�. Apart from the usual problems encountered in near-
critical experiments �finite-size effects, gravity effects, preci-
sion of the thermal control, etc.�, two other issues will have
to be considered: �i� the fact that the measure of the bulk
viscosity will only be indirect; �ii� the frequency dependence
of the bulk viscosity close to the critical point. The first issue
is linked to the proposed experimental procedure: the bulk
viscosity will not be measured directly, but will be obtained
from a calculation based on the measurement of a cutoff
pulsation. Consequently, this indirect calculation of �B from
the cutoff pulsation �v will only be as precise as the predic-
tion of the other properties on which �v depends �among
which are the thermal diffusivity and the heat capacities�.
This condition can put a limit on the precision accessible
through the proposed strategy. The second issue is related to
the viscoelastic behavior of near-critical fluids �see, for in-
stance, Onuki et al. �8� and Berg et al. �20��: close to the
critical point, the frequency domain where viscosity is
frequency-dependent becomes larger and larger. Conse-
quently, frequency-dependent phenomena may appear even
for frequencies as small as �v /2�. This consideration illus-
trates the need to extend the present theory to include
frequency-dependent thermophysical properties, if one is to
consider building an experiment like the one described here.
Such an extension is beyond the scope of this paper. Only a
careful analysis of the two issues cited above will tell
whether the principle presented here will improve the mea-
surement of bulk viscosity near the critical point �as com-
pared to the more classical use of sound attenuation, like in
Zhong et al. �19� and Gillis et al. �10��.

However, even if the estimated precision proves to be too
bad for a practical measurement to be conducted, the experi-
ment described above could nonetheless lead to an interest-
ing result: the experimental identification of the second re-
gime of the piston effect, never made until now even in
recent experiments. This perspective may make the construc-
tion of such an experiment worth the effort. We are presently
conducting a first dimensional analysis in this direction, in
collaboration with the Jet Propulsion Laboratory �NASA /
California Institute of Technology, USA� �21�.

V. CONCLUSION

In the present work, techniques of asymptotic analysis
have been applied to the problem of heat and mass transfer in
a boundary-heated cell filled with a near-critical fluid. Taking
into account the critical divergence of the bulk viscosity, a
general set of solutions has been found which describes the
temperature, pressure, density, and velocity profiles in the
fluid cell when subjected to an arbitrary boundary tempera-

FIG. 5. Ratio of the amplitudes and phase lag between the wall
and the bulk temperature oscillations in the viscous regime of the
piston effect; the fluid cell is 1 mm long, filled with 3He, and sub-
jected to a boundary temperature oscillation of pulsation �.
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ture change. Although the temperature relaxation in the fluid
cell is governed by the now classical phenomenon of the
piston effect for all initial conditions close to the critical
point, the asymptotic solutions show that this effect exhibits
two distinct regimes depending on the initial distance to the
critical point. One, not too close to the critical point, is the
classical regime of the piston effect, known for a decade now
and leading to a critical speeding up of the temperature re-
laxation; the other, closer to the critical point, is a regime
where the piston effect is weakened by the diverging bulk
viscosity, thus leading to a critical slowing down of the tem-
perature relaxation. In the present analysis, the typical time
scales of both regimes have been found explicitly, and a
general solution describing all regimes �including the transi-
tional intermediate regime� has been obtained. This result
demonstrates that the piston effect is not governed by a
single typical time scale, as believed until now, but by two
time scales, one of which is a function of the bulk viscosity.
This observation has led to the proposal of an alternative
experimental strategy for measuring the bulk viscosity close
to the critical point.
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APPENDIX: ASYMPTOTIC ANALYSIS OF THE
EQUATIONS

1. Calculation in the boundary layer

In the boundary layer, the physical quantities T*, P*, �*,
and U* are asymptotically expanded in the following way:

T* = 1 + �T + aT̃�z*,�*� + o�a� ,

P* = 1 + �P + bP̃�z*,�*� + o�b� ,

�* = 1 + c�̃�z*,�*� + o�c� ,

U* = dŨ�z*,�*� + o�d� . �A1�

T̃, P̃, �̃, and Ũ are order 1 functions of z* and �*, while a, b,
c, and d are gauge functions. As already defined in Eq. �18�,
�* is related to t* through

�* = et*,

while z* is defined as �see Eq. �16��

z* =
x*

�
.

a, b, c, d, e, and � are thus asymptotic functions of 
 and �T.
An asymptotic analysis of Eqs. �6a�–�6d� is then con-

ducted for �T and 
 going to zero, with � and z* fixed. In

order to do so, �T is expressed as a function of the control
parameter �,

�T = �
2/�. �A2�

The above expansions are then introduced in the equa-
tions of the problem �stars have again been omitted�.

Mass conservation �6a�,

ec�̃� +
d

�
Ũz = 0,

which leads to

ec =
d

�
,

�̃� + Ũz = 0.

Momentum equation �6b�,

edŨ� = −
Ab

�
�−�
−2��/��P̃z + d


�0

�2 �−��/2�−x��
−��+2x��
�/�Ũzz.

The unsteady velocity term is negligible �9�, so that the
momentum equation becomes

AP̃z = �0���/2�−x��Ũzz

with

b =
d

�

1+���−2x��

�/��.

Equation of energy �6c�,

eaT̃� = −
dB

�
��
2�/�Ũz + 


�0a

Pr0�2���/2�−x�
��−2x��/�T̃zz.

The unsteady temperature term is negligible too �9�,
which leads to

− B���/2�+x�Ũz +
�0

Pr0
T̃zz = 0,

d =
a

�

1−���+2x��/��.

Equation of state �6d�,

P̃ = CT̃ + D���̃ ,

b = a = c
2��/��.

The boundary condition in temperature is

T�z = 0,�� = 1 + �T + Tw��� ,

hence

a =  ,

T̃�z = 0,�� = Tw��� .

From here, we can calculate the gauge functions,
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a = b =  ,

c = 
−2��/��,

d = 
�x��
−�−x��/�,

e = 
��+x��
−x��/�,

� = 
1−��x��
+x��/��.

The equations in the boundary layer can then be summa-
rized �omitting the stars�,

�̃� + Ũz = 0,

AP̃z = �0���/2�−x��Ũzz,

− B���/2�+x�Ũz +
�0

Pr0
T̃zz = 0,

P̃ = CT̃ + D���̃ , �A3�

with the boundary and initial conditions,

T̃�z = 0,�� = Tw���, Ũ�z = 0,�� = 0,

�̃�z,� = 0� = P̃�z,� = 0� = T̃�z,� = 0� = Ũ�z,� = 0� = 0.

Applying the Laplace transform to the above system �A3�
and its boundary conditions, one finds

s�̃ + Ũz = 0,

AP̃z = �0���/2�−x��Ũzz,

− B���/2�+x�Ũz +
�0

Pr0
T̃zz = 0,

P̃ = CT̃ + D���̃ , �A4�

with

T̃�z = 0,s� = Tw�s� ,

Ũ�z = o,s� = 0.

The last system �A4� can be partially solved, with the fol-
lowing solutions:

�̃ = K0exp�− 	E�s�z� ,

Ũ =
sK0

	E�s�
�exp�− 	E�s�z� − 1� ,

T̃ = −
K0BPr0

�0
���/2�+x�

s

E�s�
�exp�− 	E�s�z� − 1� + Tw�s� ,

�A5�

where E�s� is given by

Pr0���/2�+x�−�s

�0�AD + �0���/2�−�−x��s�
�A6�

and K0 is an integration constant, to be determined through
the asymptotic matching with the bulk solutions.

2. Calculation in the bulk fluid

In the same way as in the boundary layer, T*, P*, �*, and
U* are asymptotically expanded,

T* = 1 + �T + aT̄�x*,�*� + o�a� ,

P* = 1 + �P + bP̄�x*,�*� + o�b� ,

�* = 1 + c�̄�x*,�*� + o�c� ,

U* = dŪ�x*,�*� + o�d� . �A7�

T̄, P̄, �̄, and Ū are order 1 functions of x* and �*, while a, b,
c, and d are again the related gauge functions �note that the
same notations have been used as in the boundary layer,
although the gauge functions in the bulk may be different
from those in the boundary layer�. An asymptotic analysis of
Eqs. �6a�–�6d� is then conducted for �T and 
 going to zero,
with � and x* fixed.

The matching condition between the velocity in the
boundary layer and the bulk fluid is written �stars have again
been omitted�


�x��
−�−x��/�Ũ�z → �� = dŪ�x = 0� ,

which leads to

d = 
�x��
−�−x��/�,

Ũ�z → �� = Ū�x = 0� .

In the same way, the matching condition between the bulk
and boundary layer temperatures reads

T̃�z → �� = aT̄�x = 0� ,

which leads to

a =  ,

T̃�z → �� = T̄�x = 0� .

The equation of mass conservation �6a� then becomes

c
��+x��
−x��/��̄� + 
�x��

−�−x��/�Ūx = 0,

from which one finds

c = 
−2/�,

�̄� + Ūx = 0.

In the bulk equation of energy, the heat diffusion term is
now negligible and the equation reads
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aeT̄� = − B��
2�/�dŪx,

which leads to

T̄� = − B��Ūx.

The equation of state can then be written

bP̄ = CT̄ + D��
2
� − � − x�

�
�̄ .

From this is obtained

b =  ,

P̄ = CT̄ .

Finally, the momentum equation becomes

P̄x = 0.

The equations of the problem in the bulk are summarized,

�̄� + Ūx = 0,

P̄x = 0,

T̄� = − B��Ūx,

P̄ = CT̄ , �A8�

with the boundary and initial conditions,

Ū�x = 0� = limz→�Ũ�z�, T̄�x = 0� = limz→�T̃�z� ,

T̄x�x = 1� = 0, Ū�x = 1� = 0,

�̄�x,� = 0� = P̄�x,� = 0� = Ū�x,� = 0� = T̄�x,� = 0� = 0.

Applying the Laplace transform to the system �A8�, the
following solutions can be obtained:

K0 =
− �0E�s�

sBPr0���/2�+x� + �0��B	E�s�
Tw�s�

and

�̄ = Tw�s�
�0

	E�s�
sBPr0���/2�+x� + �0B��	E�s�

,

T̄ = Tw�s�
�0

	E�s�
�0

	E�s� + Pr0�x�−��/2�s
,

Ū = Tw�s�
�0s	E�s�

sBPr0���/2�+x� + �0B��	E�s�
�1 − x� ,

P̄ = Tw�s�
C�0

	E�s�
�0

	E�s� + Pr0�x�−��/2�s
. �A9�

The Laplace transforms of all the solutions in the bulk and
boundary layer have thus been found in an explicit way. Note

that in the above Laplace transforms, the Laplace parameter
s is related to the dimensionless time variable �*.

3. Solutions of the problem at dimensional time t

The previous dimensionless solutions on the �� time scale
can now be rewritten as functions of the dimensional time
variable t.

According to the properties of Laplace transforms, when
two time variables �* and t are related by �*=�t, the corre-
sponding Laplace variables s�* and st are related by

s�* =
1

�
st. �A10�

For a function f��*�, the corresponding Laplace trans-

forms F�s�*� and F̂�st� are related through

F̂�st� =
1

�
F� 1

�
st� . �A11�

Here, �*= �eCs /L�t, with

e = 
��+x��
−x��/�.

Then, Tw�st�= �L /eCs�Tw�s�*�. Therefore, the Laplace trans-
form of the dimensional solutions is as follows.

In the boundary layer,

�̃�s� = −
1

B
Tw�s�

�0E�s�

sPr0
L

eCs
���/2�+x� + �0��	E�s�

exp�− 	E�s�z� ,

T̃�s� = − Tw�s�
s

s +
eC�0

LPr0
���/2�−x�	E�s�

�1 − exp�− 	E�s�z��

+ Tw�s� ,

Ũ�s� =
1

B
Tw�s�

s�0
	E�s�

sPr0�x�+��/2� +
eCs�0

L
��	E�s�

��1 − exp�− 	E�s�z�� ,

P̃�s� = − CTw�s�
s

s +
eCs�0

LPr0
���/2�−x�	E�s�

�1 − exp�− 	E�s�z��

−
D

B

−2�/�Tw�s�

�0E�s�

sPr0
L

eCs
���/2�+x�−� + �0��−�	E�s�

�exp�− 	E�s�z� + CTw�s� .

In the bulk,

�̄�s� =
1

B
Tw�s�

�0
	E�s�

�0��	E�s� +
LPr0

eCs
�x�+��/2�s

,

P. CARLÈS AND K. DADZIE PHYSICAL REVIEW E 71, 066310 �2005�

066310-12



T̄�s� = Tw�s�
�0

	E�s�

�0
	E�s� +

LPr0

eCs
�x�−��/2�s

,

Ū�s� =
1

B
Tw�s�

�0s	E�s�

�0
eCs

L
��	E�s� + Pr0�x�+��/2�s

�1 − x� ,

P̄�s� = CTw�s�
�0

	E�s�

�0
	E�s� +

LPr0

eCs
�x�−��/2�s

.

The temperature solution in the bulk can now be ex-
pressed,

T̄�s� = Tw�s�
1

1 +
LPr0

eCs
�x�−��/2� s

�0
	E�s�

.

Replacing E�s� by its expression and using e=
��+x��
−x��/�

and �=�T
−2/� leads to the result presented in Eq. �20�.
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